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lling Tire der Loa I 

Samuel K. Clark 
Dept. of Engineering Mechanics, University of Michigan 

IT IS A reasonably good approximation to state that most 
pneumatic tire problems can be separated into two groups, 
these being: 

1. Those involving motion in the plane of the wheel or 

2. Those involving motion transverse to the plane of the 
rim. 

wheel or rim. 

There are, of course, occasional exceptions to this com- 
partmentalization, but in  the main it is felt that consider- 
able knowledge could be gained by developing methods for 
separately studying pneumatic tire performance, either in 
the plane of the wheel or transverse to the plane of the 
wheel. 

Preliminary efforts have been made by such writers as 
Saito (1)* and Thorsen (2) in developing techniquesfor pre- 
dicting cornering forces and other effects transverse to the 
plane of the wheel. To the best of the writer's knowledge, 
no systematic attempts prior to Ref. 3 have been made to 
study motion in the plane of the wheel. In that report, the 
use of an elastically supported cylindrical shell was proposed 
as a means for studying the static loading of a pneumatic 
tire against an infinitely rigid, frictionless plane. The re-  
sults obtained from that anlysis seemed to agree fairly well 
with contact patch length measurements made on real pneu- 
matic tires. 

Numbers in parentheses designate References a t  end of 
paper. 

In view of the many current problems associated with 
pneumatic tire motion in the plane of the wheel, i t  was felt 
desirable to attempt to extend these analytical techniques 
to those dynamic cases that could be  profitably studied. 

BASIC DYNAMIC MODEL FOR A ROLLING TIRE 

W e  consider first a generalized cylindrical shell under 
arbitrary loads. This is shown in Fig. 1, 'taken from Flugge 

From Fig. 1, force equilibrium equations may be written 
for the element of cylindrical shell surface. Generally, , 

these equations are directed in the "xa and "rn directions, 
and are given as 

i + N '  + P  . a = o  

(4). 

x ex x 

M " + G x e + 3  + M  *I + a N e - P a  2 = o  
9 ex  x r 

The following symbols are used: 

It is next necessary to consider displacements of a cylin- 

u = Displacement along the generator, positive in the 
drical shell, where we let 

direction of increasing "xa 

ABS TRACT 

Methods are presented for calculating dynamic contact 
patch areas of an elastically supported cylindrical shell used 
to model the dynamic rolling of a loaded pneumatic tire. 
These areas are shown to be influenced considerably by roll- 
ing velocity, constructional parameters of the tire, and its 
loss characteristics. Dynamic pressure distributions within 

contact patch areas are obtained analytically, and the tech- 
niques involved are given. The shell is used as a basis for 
calculating load carrying and drag properties of a pneumatic 
tire SO that various tire parameters may be a2proxirnated. 
The results given here are typical of information obtainable 
from such a model. 
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v = Displaccrnent along a circle of radius -a", positive 

w = Radial displacement, positive outward 

. in direction of increasing 8 

Using this notation and assuming that: 

~ 
1. All points lying on one normal to the middle surface 

before deformation do the same after deformation. 
2. For al l  kinematic relations, the distance "2" of apoint 

from the middle surface may be considered as unaffected by 
the deformations of the shell. 

3. The stress a may be considered negligible compared r 
I 

I 0' 
with the stresses a and a 

X 

By use of such assumptions, and by consideration of the 
definitions of shell forces, one may finally express the vari- 
ous shell forces and moments in terms of the deformation 
by means of the following equations: 

- 
D * K  Ne =a (v '  + w + PU) + 3 (W + w")  

a 

b .  K ++ 

a 3 , N X = - ( ~ + p v m  + p ~ ) - -  W 

a 

- L K 1 - p  L L 
(v - w') = D + v )  +-* - 

3 2  a 
Nxe - 2 a 

K ++ 

a 
Me =-(W + w"+ p ~ )  

2 

a 

If one uses Eqs. 3 and substitutes them into Eqs. 1, it  is 
possible to obtain the three equations of equilibrium in 
terms of the three differential equations in displacements 
u, v, and w of the middle surface of the shell. Theseequa- 
tions become 

++ 1 + p +  2 - I.1 u" + - v'+ pw + 01 
2 

u +- 
2 

p Z + v ' + w  

I 2 1 - p  0 S I .  3 - p ++' +.+I - u'* - u -- v + w + a  + 23' t wl" + 2w" + w  [z 2 

(4) 

W e  next wish to consider the specific case of a rathernar- 
row cylindrical shell that has no variation of loading with 
respect to the "XI direction. In this case, the shell takes on 
the form shown in Fig. 2, where a shell of width b and 

W 

A r  
I 
I 

dx x8 
Fig. 1 - Shell stress 
resultant conventions 
and nomenclature 
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, thickness "h" iqmade of material of modulus E and density 
p ,  the radius of the cylinder being "a." 

If the loading is uniform with respect to the "x" direc- 
tion, and if the width b is small enough so that contrac - 
cion in the .x" direction may be neglected, then one may 
visualize that all derivatives with respect to "x" in Eqs. 4 
will vanish. In addition, all displacements "u" in the "x' 
direction become negligible and will  b e  dropped, as wil l  
pressure components in the "x" direction. Allowing these 
simplifying assumptions to be used in Eqs. 4 causes them to 
reduce to 

W 

2 a = o  

There are several ways that one may proceed to analyze 
I Eqs. 5. Perhaps the simplest of these is to visualize, that for a 

frictionless plane P6 vanishes, so that the first of Eqs. 5 

simply states that 

(z + w) =Constant 

This same term occurs in the second of Eqs. 5. It is im- 
mediately recognized as being connected to the circumfer - 
entia1 membrane strain through the well-known relation 

a 

It is simplest to carry this term along in the equations for 
some time before assigning it a specific value. Hence, Eqs. 
5 may now be written as 

2 

This equation now represents the equation for deflection 
of a cylindrical shell against a frictionless load, so that only 

3 

2 radial pressures exist. Note that the constant a is given by 

I 2 h2 a = -  
2 

12a 

In Eq. 7 it is desirable to include most of the properties 
of a teal pneumatic tire by means of adjusting the radial 
pressure term p for various tire effects. Specifically, it is 

desired to support the elastic shell by  means of some kind of 
generalized impedance, in such a way that both real elastic 
moduli and imaginary elastic moduli can be operative. This 
might be  thought of, in some respects, as filling the inside 
of the shell with a massless foamlike material. 

For purposes of this report, the generalized impedance 
wil l  be reduced to the specific case of a real elastic and vis - 
cous loss support system, but i t  is readily understood that the 
viscous loss support mechanism may be replaced by other 
mechanisms such as a hysteresis type of loss. For the pres- 
ent, the viscous loss mechanism represents a very simple d e -  
vice which is easily treated analytically, and for that reason 
will be retained here. 

As an additional feature of Eq. 7, it is desirable to i n -  
clude both a uniform internal inflation pressure and an ex- 
ternal pressure loading term denoting contact pressures com-  
ing from contact with the ground surface. 

Finally, inertia terms form part of the radial loading, 
since i t  may b e  anticipated that the shell in question will 
b e  accelerating in the "wn direction as well as being sub- 
jected to an overall rigid body rotation of angular velocity 
62. After accounting for a l l  these factors, one may write the 
total  radial pressure of the shell in the form 

2 

r 

pr = - p h [ G  - ( a  + w)62 1 (8a) 

p, = - kw (8b) 

Pr = cw ( 8 ~ )  

P, = Po 

P, = - P ( e )  

assuming that tangential velocities are negligible and where 

By including a l l  these effects into Eq. 7, one finally ob - 
tains 

2 2 

Eh 
a €  i-i- a w  a c  \;I + Ct2WIV + 2a2w. 

'm c 2  
1 

"1 + w  [ ~ t ' + ~ - - ] = ~ [ p ~ - ) o + p h n 6 2  2 

Fin. 2 - Narrow cvlindrical shell notation Y (9) 



In this equation, the presence of the O2 term is due to 
the fact that the shell is assumed to be rotating with angular 
velocity 51. We shall next allow loads to move in the 
opposite direction to 52, around the periphery of the rotating 
shell, by means of transforming the'shell equations into a ' new independent variable: 

2 2 -- a ( - (") - 2n( * ) + 61 ( )" 

a t  (10) 
2 

Using these, one obtains 

2 [ 2  f + a2wIV + 2 a  w" +.w a + - - - 

where 

c =f 
1 P  

Next, introduce the new variables (see Ref. 5): 

2 E  - = z ;  - = r ;  c -- 
a a 1 P  

- 1 tC 
W 

from which the equation of motion of the shell may now be 
written in the form 

2 I V  
acc .. 1.. 2a61 

1 
e + z  + - z - - i ' + a z  

Eh C 'rn 

( a 2 + - - -  ka2 Q2a2) z 
E h E h  

r 1 

Introducing the variable 

52a - 
,=51 
c, 
I 

one finally obtains Eq. 13 in the form: 

'I = - a [-,(e) + po + phaQ 
Eh 

In Eq. 15, we define the new constants as follows: 

2 
and dividing by a , one finally obtains the equation of mo- 
tion: 

e 

- + - + - z  --i'+ Z I V +  
'rn i' c . 2z2 

a2 a a 2 
U 

2 2  

-- 

a 

PE fi2 Po = -- + - + -  
a a2 a2 

where: 
2 

Eh 
- ka k = -  

Eq. 17 is an equation for motion of the cylindrical shell 
and contains a l l  terms necessary for representing most of the 
phenomena that can be observed in a rolling pneumatic 
tire. Loss terms are represented through the viscous loss 
constant F, dynamic terms through the quantity E, and elas- 
tic terms through the quantity E. The angular velocity of 
the wheel is given by the dimensionless angular velocity 5 , 
so that Eq. 17 in effect represents a circular cylindrical 
shell, supported as indicated in Fig. 3, with a moving load 
of angular velocity 52. 

In addition to this angular velocity 52, one may super- 
impose a rigid body rotation of angular velocity Sa in the 
opposite direction, as was done with the inertia term of 



5 

2 *. the form (a + w)Q in Eq. 8. This term, whose effect is to 
superimpose the rigid body rotation of angular velocity 
on the entire system, results in Eq. 17, now representing the 
rotating tire with stationary impressed load, such as is shown 
in Fig. 3. 

this condition, all time derivatives vanish, and by making 
substitutions of constants in the form 

W e  now consider steady-state solutions to Eq. 17. Under 

01 01 

PE - = p; 
2 -  

01 

which implicitly defines the dimensionless displacement "z" 
as being measured from the inflated position. Using this, 
Eq. 19 may be  written in the form 

IV + ( 2  + WA) Z'' - ( C W A ) Z  

where Z is used to emphasize that this displacement is meas- 
ured from the inflated tire as a reference. From this equa - 
tion one sees that the static problem may be obtained read- 

a i ly  by allowing the values of both W A and CW A to vanish 
(18) simultaneously. This causes Eq. 2 1  to reduce immediately 

PO to - = P A  
ci 

( 22) 
- I V  

2 
z + 2z" + (1 + K A ) ~  = -pe 

' one sees this reduces to 
€ 

+ zIv + (2 + W A ) z "  - ( C W A ) z '  + (1 + KA - W A ) z  
'rn - 
2 a. 

= P A  - PO + W A  ( 19) 

where, of course, the primes represent derivatives with re- 
spect to the variable 8 and, in general, Eq. 19 represents 

steady-state, or standing-wave, solutions to the deformation 
of the rotating cylindrical shell. 

1 

It is now necessary to define the constant E 01 .This @ I 2  m 
wi l l  be done by making the following basic assumptions: 

1. The process of inflation will be considered as one in- 

2. The process of deforming the tire in the contactpatch 
volving membrane effects only. 

will be considered as one involving bending effects only. 

Based on these ideas, we  may let 
~ 

which was used in Ref. 3. 

THE C O N T A C T  P A T C H  REGION 

There are two problems associated with attempting to 
define the region or length of contact of the tire model 
pressed against a frictionless plane. The first of these is the 
determination in some form or another of some of the elas- 
tic constants that fit into the various equations of motion 
just  developed, particularly Eq. 21, which is the primary 
statement of deformation from the inflated state. 

One method of accomplishing this is to observe that the 
static case of Eq. 21, given in this report as Eq. 22, indi- 
cates that the static problem of contact is a relatively sim - 
ple one involving only a single elastic constant, the dimen- 
sionless foundation modulus denoted here by the symbol K A .  
It should be  possible to determine the value of K A  by appro- 
priate tests on various real tires, in which certain deflections 
are imposed and the resulting contact patch lengths are 
measured. Experiments indicate that this may indeed be 
done. 

Similar techniques have not yet been developed for the 
direct  measurement of other elastic constants appearing in 
Eq. 21. For purposes of this report, tire construction may 
be used as a guide in calculating some of the constants 
appearing in this equation, and ,in this respect w e  are rather 
fortunate in having available a background in the material 
properties of cord rubber laminates. By the use of such in-  
formation, one could generally hope to obtain the remaining 
constants necessary in Eq. 21. 

In connection with Eq. 21, one must next decide on tech- 
niques for treating the deformation of the cylindrical shell 
model against a frictionless plane. In doing this, it is seen 
that the left side of the equation contains terms invoIving 
deflections, and the right side contains only the external 
pressure loading term. If one could know the deflections 
of the shell model inside the contact patch regioii, then it 
might be possible to specify the values "z" on the left side 
of Eq. 21 and to calculate the particular values of e, for 
which the external pressure vanished, by means of the right 

Fig. 3 - Shell c h a m -  
teristics 



side vanishing in 
erence to Fig. 4. 
that 

where z = w/ao 

Eq. 21. This may be accomplished by ref- 
from which one may deduce by geometry 

and most direct of these would be  to manufacture a model 
of the type visualized here and actually to conduct tests in- 
volving its rolling over some essentially frictionless plane, 
in such a way that pressure distributions, total vertical loads, 
and drag forces could be measured accurately. 

If the properties of the model were  well known, then the 
predictions of the theory could be  compared with measured 
data. However, such a series of experiments becomes rather 
difficult when they must be done on a flat plane as visual- 

cos e 
(23) 

COS e 

The first, second, and fourth derivatives of this function 
are needed, and these work out to be 

cos e 
cos e 4 

- IV 

COS e 

Once having obtained these derivatives, it may be seen 
a t  once that, given the proper elastic constants, all terms 
of Eq. 21 may be  evaluated by using Ms. 23-26, which 
physically means that the outer surface of the shell is in 
contact with the flat plane of Fig. 4. W e  then search for 
the pressures Pe in Eq. 21, which cause this situation to oc- 
cur, 

Inside the region of the contact patch such pressures w i l l  
be positive, and outside the'contact patch region such pres- 
sures will )e negative. Thus w e  search for solutions to m. 
21 in which the right-hand side is zero. Such solutionsmust 
be  functions of the angle e, and such solutions thus give an-  
gles 8 that define the ends of the contact patch. 

Note that all functions on the left side of Eq. 21areeven 
except for the first derivative function, which occurs incon- 
nection with the damping term. If the damping is nonzero, 
then it may be  seen that the forward and aft angular loca- 
tions of the contact patch wi l l  not be  equal to one another, 
and in general this has been observed to be a fact. Use of 
Eq. 21 thus gives dynamic information concerning the con- 
tact patch in a rolling tire under the assumptions of com- 
plete contact with the flat plane. 

calculation of contact patch length under dynamic condi - 
tions will be  presented. For the moment, the theory is com-  
plete and need be worked out only for the proper numerical 
cases. 

h a later section of this paper a specific example of the 

CALCULATIONS AND EXAMPLES 

ized here, since the equipment for rolling a wheel on such 
a flat surface is expensive and complicated. For that reason 
a different approach wi l l  be used here, where one attempts 
to utilize physical data that closely approximates those of a 
real tire, and attempts to predict some of the known oper- 
ating characteristics of such a tire. 

first process, since it is known that many of the important 
operating characteristics of a tire depend heavily on the 
form of its internal loss. These internal loss characteristics 
are not necessarily well  defined for rubber-cord combina- 
tions. It is clear that a simple viscous loss law does not rep- 
resent such loss characteristics very well ,  but the form is 
quite simple and will serve to illustrate the method of c a l -  
culation. For this reason it should be  pointed out clearly 
that the purpose of this example is not to model a specific 
tire exactly, but rather to introduce a technique that, given 
the proper loss characteristics, can b e  used to perform such 
modeling. Hence, the resulting calculations are only indi - 
cations of the general nature of tire behavior under such con- 
ditions. The fact that some of the important characteristics 
seem to agree with actual tire characteristics gives hope that 
the theoretical framework outlined here wi l l  have some uti l-  
ity as a tool in predicting the response of a real pneumatic 
tire. 

Eq. 21. Basically, these constants are exactly those that one 
must use to define the overall characteristics of a circular 

In some respects this method is less satisfactory than the 

One must first turn to the constants needed in evaluating 

There are at least two methods for attempting to verify 
some of the thore t ica l  ideas brought out by the use of a 
model such as that proposed in this report. Perhaps the best 

Fig. 4 - Geometry of intersection of elastic shell with rigid 
plane surface 
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cylindrical shell of the type proposed here. An attempt has 
bccn mad,: to chose such chnractcristics to be compatible 
with n 7.50 x 14.00 automotive tire, and the resulting nu-  
merical values are being used for subsequent calculations: 

b = 4.25 in. E = 10,000 psi 
W 

a = 12.35 in. h = 1.14 in. (27) 

a = 13.35 in. 0 
-4 2 4  

p = 1 X 10 lb-sec /in. 

Using this particular value of the outside radius of the 
wheel, a (namely, 13.35 in.), one finds that the angular 

velocity is related to the linear speed in miles per hour by 
the relation 

0 

Q = 1.32 rad/sec/mph (28) 

Consider next the problem of calculating the response of 
a pneumatic tire having the properties given in Eqs. 27 un- 
der conditions of given velocity and load. For this purpose, 
one must first specify the loss law to be used. The viscous 
loss type of law previously discussed will  be utilized here, 
and the damping factor "c" will  be chosen as 

c = 0.10 (29) 

This is based on interpretation of oscillograph records from 
free vibration tests of a pneumatic subjected to an impul- 
sive blow. 

A digital computer program has been constructed, which 
first calculates the forward and aft edges of the contactpatch 
a t  a fixed value of damping constant and for various values 
of the other parameters listed in Eqs. 27 and 28. Thisisdone 
by specifying ;he tire deflection, which is effectively ac - 

7 

complishcd by fixing the angle 0 of Eq. 23 or of Fig, 4. 

Oncc thc limits of the coiltact patch arc known, one may 
utilize Eqs. 21 and Eqs. 23-26 to calculate the prcssure dis- 
tribution in the contact patch. Given the pressure distribu- 
tion, the total load and the drag force may be obtained by 
integration. For this example, the vertical tire deflection 
wil l  be  allowed to vary from 0.5 to 2.0 in. The linear ve- 
locity will be  allowed to range from 0 to 120 mph, and the 
inflation pressure will take on four values, 0, 15, 24, and 
40 psi. 

In these calculations it is necessary to have some value 

for the dimensionless foundation modulus c/a2 = KA. It was 
previously pointed out that this quantity can be obtained d i -  
rectly from a static test in which the length of the contact 
patch is measured, and for the particular tire in question, 
a value of KA = 325 was obtained. 

where the forward and aft boundaries of a typical contact 
patch are plotted as a function of rolling velocity. 

One might note from Fig. 5 that, generally speaking, the 
tire exhibits a forward shift of the contact patch with speed, 
in that both the forward and aft edges move forward with 
velocity. This causes the entire pressure distribution to 
move forward and results in a shift of the center of pressure 
forward of the axle point so as to cause a drag force. This 
again seems to agree generally with experience. 

In Fig. 6 are shown curves of the influence of rolling ve- 
locity on vertical load carried at  constant tire deflection. 
These curves are plotted for two different values of inflation 
pressures. Generally, the influence of speed is to increase 
load at  fixed deflection. Conversely, a t  fixed load, one 
would expect deflection to decrease with speed. Hence, roll- 
ing radius would increase with speed, as has been observed. 

In Fig. 7 ,  the drag force is plotted as a function of tire 
deflection for four different values of internal pressure, a l l  
data being calculated a t  a constant forward speed of 40 mph 
These curves are almost entirely dependent upon the de-  

0 

The results of these calculations are first given in Fig. 5, 

AFT - -FWD 

7 80 n I4 TIRE AWROX. 
wirn visccus LOSS 

flXED TIRE DEFLECTKWI. 
7 50 a 14 SIZE APPROX 

FIXE0 TIRE DEFLECTION OF 1. 

wiin VISCOUS LOSS LAW 

I' 
0 

5.40~~1 

0 

1000 

I 

t 

PATCH TERMINAL POINT - RADIANS 
VELOCITY, MPM 

Fia. 6 - VFrricgl lonrl  nc a f'tlnctinn - f  - . * - - A  

Fig. 5 - Contact patch length and position as a function of 
)'. t I 
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tailed form of the loss lzw that is assumed for this particular 
model, a viscous law with losses assigned only to the foun- 
dation. Nevertheless. the calculations do illustrate the gen- 
era1 form of the results obtained, and show that cvcn for this 
crude loss mechanism, the drag force increases both with 
deflection and with inflation pressure, as it should. 

One advantage to plotting data in this fashion is that such 
constant speed plots eliminate some, but not all, of the dif- 
ficulties of the problem of correcting the loss law for tem- 
perature increaxs, and hence loss increases, as speed is in -  
creased. By restricting attention to a constant speed, one 
does not see these temperature effects quite so clearly. It 
should also be noted that Fig. 7 does not contain any loss 
from scrubbing in the contact patch, although this may be  
a small factor in the overall picture. Fig. 7 is intended as 
a general presentation OF the type of information that can  
be obtained by calculation from this model, and should not 
be interpreted as representing the characteristics of the gen- 
eral model. 

patch are plotted as a function of rolling velocity for the  
same two internal pressures as previously treated. The 
results shown in Fig. 8 seem to indicate that a t  the usual 
inflation of 24 psi, contact pressures would normally not 
exceed 40 psi under ordinary driving conditions. 

the contact patch at two different speeds, 0 and 100 mph 
for a single inflation pressure. The static pressure distribu- 
tion is symmetric and almost rectangular. On the other 
hand, the dynamic pressure distribution evaluated at 100 
mph shows rather large differences between the peak pres- 
sure near the center of the contact patch and the inflation 
pressure. In addition, the entire pressure distribution has 
shifted forward. This causes a forward movement of the 
center of pressure, which results in drag forces. 

I 

. 

In Fig. 8, the maximum contact pressures in the contact 

Fig. 9 shows plots of the contact pressure distribution in 

I , 

So far a l l  the results presented have been speculative in 
the sense that good experimental data have not been avail-  
able as a check. However, there is one static quantity that 
can be easily measured, and that is the load deilcction 
curve. The particular tire that was being modeled here was 
inflated to various pressures and loaded to obtain such 
curves. These results are compared with calculation in  Fig. 
10, where it is seen that predictions tend to be  a little more 
accurate a t  lower deflections than at higher, which might 
be expected from such a linearized theory. 

7 
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DEFLECTION 

Fig. 10  - Static load deflection curves. experimen- 
tal versus calculated 

In e-  1 i t  might b e  said that by use of the equations 
i t i ~ s  paper, it is possible to calculate many of discuJJbL 

the in'lortant quantities dealing with the rolling of a pneu- 
matic tire in a straight line under constant velocity condi- 
tions. One very important characteristic in  such calcula- 
tions is the form of the loss law, since this determines almost 
completely the general form of the drag forces that are gen- 

erated and also dictates to some extent the nature of the 
contact patch shift as velocity increases. Therefore i t  should 
be emphasized that users of this type of mathematical model 
will probably find it necessary to generate their own indi- 
vidual loss laws and to insert them into the appropriate 
equations of this report. Only by this process wil l  it be pos- 
sible to obtain realistic tire performance data from a mathe- 
matical model such as this. 
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